[HOME - BASE Cinque - Appunti di Matematica ricreativa]
Questo problema è tratto dal libro di Steinhaus STO ZADAN, Warschau 1958
Ringrazio Ivana Niccolai per aver inviato questo problema al Forum e segnalato la sua recensione del libro Hugo Steinhaus, "CENTO PROBLEMI DI MATEMATICA ELEMENTARE", a cura di Franco Conti, Superuniversale Boringhieri, 1987.
La signora Z non è molto giovane, perché è nata tra le due guerre mondiali, ma, come tutte le donne, non vuole rispondere direttamente a domande sulla sua età. Alla domanda rivoltale il 27 luglio 1950, in occasione del quarto anniversario di matrimonio, rispose: "Ho solo un anno, perché festeggio il mio compleanno solo quando cade nel giorno esatto della settimana, e questo è accaduto una sola volta nella mia vita.
Quanti anni ha la signora Z?
Chi volesse leggere la recensione del libro da cui è stato tratto questo problema, vada nella seguente pagina web: http://www.maecla.it/bibliotecaMatematica/pz_file/steinhaus.htm
agosto 2004
Ringrazio Tino
per la chiara ed esauriente risposta.
Mi ha interessato molto analizzare il problema, anche
perché ho ragionato con strumenti matematici su cose comuni come
sono gli anni.
Spero di non aver commesso sviste madornali.
Premetto che ho inteso "tra le due guerre mondiali"
come il periodo di tempo 1914 - 1945, cioè tra l'inizio della
prima e la fine della seconda.
365/7 = 52 + 1/7, 366/7 = 52 + 2/7, il che significa che:
Se una data è precedente al 29 febbraio, l'anno successivo cadrà
un giorno della settimana dopo se l'anno in corso non è
bisestile, due giorni della settimana dopo se l'anno in corso è
bisestile.
Se una data è successiva al 29 febbraio, l'anno successivo cadrà
un giorno della settimana dopo se l'anno successivo non è
bisestile, due giorni della settimana dopo se l'anno
successivo è bisestile.
Con queste premesse si può costruire una legge per determinare
il numero di volte in cui un giorno si ripete. Premetto che
considererò la signora nata tra il 1914 e il 1931, perché
altrimenti mi parrebbe troppo giovane per essere sposata da 4
anni nel 1950.
Gli anni bisestili in considerazione sono del tipo 1900 + 4n con
n>=4.
Partendo da un anno (1900 + x), t.c.
1914 <= (1900 + x) <= 1931,
di un giorno della settimana k (per convenzione, se per es. k è
lunedi, k+2 è mercoledi, e k+7 è ancora lunedi), posso
applicare la regola sopra descritta in tutti i casi:
a) x congruo a 0 modulo 4 (1900+x bisestile). (ogni somma si
riferisce ad un anno)
- k precedente al 29/02: k+2+1+1+1+2 = k+7, ovvero dopo 5 anni si
ripeterà lo stesso giorno.(k+7)+1+1+1+2+1+1 = (k+7)+7, e ne
abbiamo trovati 2 dopo 11 anni. Siamo contenti
(nel peggiore dei casi, 1928 + 11 = 1939 < 1950)
- k successivo al 29/02: k+1+1+1+2+1+1 = k+7,
(k+7)+1+2+1+1+1+2+1+1+1+2+1 = (k+7)+14, due dopo 17 anni. (1928 +
17 = 1945 < 1950)
b) x congruo a 1 modulo 4.
- k precedente al 29/02: k+1+1+1+2+1+1 = k+7,
(k+7)+1+2+1+1+1+2+1+1+1+2+1 = (k+7)+14, due dopo 17 anni. (1929 +
17 = 1946 < 1950)
- k successivo al 29/02: k+1+1+2+1+1+1 = k+7,
(k+7)+2+1+1+1+2 = (k+7)+7, due dopo 11 anni.
(1929 + 17 = 1946 < 1950)
c)x congruo a 2 modulo 4.
k precedente al 29/02: k+1+1+2+1+1+1 = k+7,
(k+7)+2+1+1+1+2 = (k+7)+7, due dopo 11 anni.
(1930 + 11 = 1941 < 1950)
k successivo al 29/02: k+1+2+1+1+1+2+1+1+1+2+1 = k+14, (k+14)+1+1+2+1+1+1
= (k+14)+7, due dopo 17 anni.
(1930 + 17 = 1947 < 1950)
d) x congruo a 3 modulo 4.
- k precedente al 29/02: k+1+2+1+1+1+2+1+1+1+2+1 = k+14, (k+14)+1+1+2+1+1+1
= (k+14)+7, due dopo 17 anni.
(1931 + 17 = 1948 < 1950)
- k successivo al 29/02: k+2+1+1+1+2 = k+7,
(k+7)+1+1+1+2+1+1 = (k+7)+7, due dopo 11 anni.
(1931 + 11 = 1942 < 1950)
Poiché ogni data diversa da 29/02 si ripete anche nel giorno
della settimana almeno due volte, bisogna concludere che l'unica
data possibile è il 29 febbraio.
Controllando barbaramente gli anni bisestili dal 1916 al 1928, ho
scoperto che date che soddisfano quanto richiesto ce ne sono due:
29 febbraio 1916 (martedi, si ripete solo nell'anno 1944),
29 febbraio 1920 (domenica, si ripete solo nell'anno 1948).
Ma se consideriamo il periodo "tra le due guerre mondiali"
come tra la fine della prima e l'inizio della seconda, otteniamo
la sola data 29/02/1920. Il 27 luglio 1950 la signora aveva
dunque 30 anni. Si era sposata a 26. Ragionevole.
Sito Web realizzato da Gianfranco Bo